- 2016 5th OpenFOAM Korea User's Community Conference -

OpenFOAM을 이용한 파랑 중 선박의 부가저항 수치해석

2016. 9. 30

한국해양대학교 서성욱, 박선호

1. Introduction

- Research background
- Research objective

2. Numerical modeling

- Ship model and boundary conditions
- Numerical methods
- Simulation conditions
- Wave generating method
- 3. Results
 - Ship resistance, sinkage and trim in calm water
 - Wave generation
 - Total resistance, heave & pitch motion in waves
 - Wave pattern in waves
- 4. Conclusion and discussion

Research background

- ·국제해사기구(IMO)으로부터 선박의 온실가스 방출을 규제하기 위한 EEDI 및 EEOI 도입
 - ※ Energy Efficiency Design Index, EEDI : 선박제조 연비지수
 Energy Efficiency Operator Indicator, EEOI : 선박운항 연비지표
 - 온실가스 방출 대비 운항 효율을 향상시키기 위해 선박의 부가저항을 감소시키는 방법이 고려
 - 실제 운항 상태에서의 정확한 선박의 부가저항 추정 필요

※ 출처 : 황태규. 2012. "선박에너지효율등급 도입에 따른 친환경-고효율 조선 요소부품 경쟁력 제고 전략"

KOREA MARITIME AND OCEAN UNIVERSITY

□ Research background

· 부가저항 : 선박이 실제 해상에서 운항하는 경우 바람이나 파랑에 의해 받는 저항

$$R_{added}$$
 : 선박의 부가저항 $R_{added} = Rtot_{al} - Rcal_m$ R_{total} : 실제 해상에서 받는 선박의 전 저항 R_{calm} : 정수 중에서 받는 선박의 전 저항

Research objective

- · OpenFOAM를 이용하여 파랑 중 선박의 부가저항 계산
- ·5가지 규칙파랑에 대한 선박의 부가저항 및 2자유도(pitch & heave) 수치해석
- ·2015 Tokyo CFD workshop 부가저항 모형실험 결과와 비교

Numerical modeling

$\hfill\square$ Ship model and boundary conditions

- · 3,600TEU KRISO Container Ship(KCS)를 선정
- · blockMesh와 snappyHexMesh를 이용하여 격자 생성(370만개)

Table 1. Principal particulars of KCS model

	Full Scale	Model Scale
Scale ratio	1	1/37.9
Length (m)	230.0	6.0702
Breadth (m)	32.2	0.8498
Depth (m)	19.0	0.5015
Draft (m)	10.8	0.2850
Reynolds number	2.4×10^{9}	1.07×10^{7}
Froude number	0.	261

Fig. 1 Boundary conditions and domain size

Numerical methods

- Solver : interDyMFoam (2-phase flow, dynamic mesh)
- · Dynamic module : Six-degree of freedom rigid body motion
- Free surface : VOF (Volume Of Fluid) method
- · Wave generation : waves2Foam
- Turbulence model : k-w SST Model
- · P-V coupling : PIMPLE (hybrid method between PISO and SIMPLE)
- · Convection term : 2차 정확도 차분 (vanLeer)
- ·Diffusion term : 2차 정확도 중심 차분

Simulation conditions

- · 선박의 2자유도(heave & pitch) 운동 해석
- ·단파($\lambda/L=0.65$) ~ 장파($\lambda/L=1.95$) 5가지 규칙파랑으로 분류

Table 2 Simulation conditions in calm water and in regular head wayos

Case no.	Froude number	Wave steepness <i>Η/λ</i>	Wave length λ/Lpp	Encounter frequency <i>fe</i> (Hz)	Encounter period <i>Te</i> (s)
0	0.261		no	waves	
1	0.261	1/60	0.65	1.136	0.878
2	0.261	1/60	0.85	0.940	1.064
3	0.261	1/60	1.15	0.762	1.312
4	0.261	1/60	1.37	0.676	1.480
5	0.261	1/60	1.95	0.533	1.874

Numerical modeling

- □ Wave generating method
 - ·소스코드가 공개된 waves2Foam 사용(Jacobsen et al., 2012)
 - ·Generating zone과 Damping zone을 사용하여 파랑의 생성과 소멸을 표현
 - ·2차 stokes 파 이론을 적용

Fig. 2 Simulation domain used for wave generating zone and damping zone

\Box Ship resistance, sinkage and trim in calm water

Case 0	C _T (×10⁻³)	sinkage/L _{PP} (×10 ⁻³)	trim (deg)
EFD	3.835	-2.074	-0.1646
Present	4.018	-1.989	-0.1676
Error (% EFD)	-4.757	4.216	-1.845

Table 3. Result in calm water

Results

KOREA MARITIME AND OCEAN UNIVERSITY

Results

\Box Total resistance, heave & pitch motion in waves

added resistance : $\sigma_{aw} = \frac{F_{x,wave} - F_{x,calm}}{\rho g \zeta_{I1} B_{WL}^2 / L_{PP}}$ heave : $TF_3 = \frac{x_{31}}{\zeta_{I1}}$ pitch : $TF_5 = \frac{x_{51}}{\zeta_{I1}k}$

Table 7. Results of C_{π} added resistance, TF_3 and TF_5 in difference wave conditions

<i>C_T (</i> ×10 ³)					σ_{aw} (added resistance)						
Case	1	2	3	4	5	Case	1	2	3	4	5
EFD (L=6.07m)	4.127	4.622	7.078	6.977	5.421	EFD (L=6.07m)	3.386	6.102	9.911	6.512	1.909
Present (L=6.07m)	4.379	5.036	7.451	7.559	5.514	Present (L=6.07m)	4.803	8.320	10.807	7.577	1.986
Error(%)	-6.120	-8.944	-5.271	-8.335	-1.725	Error(%)	-41.853	-36.353	-9.042	-16.348	-4.039
<i>TF₃ (heave)</i>											
		TF ₃ (he	eave)					ΤF ₅ (p.	itch)		
Case	1	<i>TF₃ (he</i> 2	eave) 3	4	5	Case	1	ТҒ₅ (р	<i>itch)</i> 3	4	5
Case EFD (L=6.07m)	1 0.130	<i>TF₃ (he</i> 2 0.241	2 <i>ave)</i> 3 0.899	4 0.875	5 0.933	Case EFD (L=6.07m)	1	<i>TF₅ (pl</i> 2 0.146	<i>itch)</i> 3 0.748	4 0.966	5 1.119
Case EFD (L=6.07m) Present (L=6.07m)	1 0.130 0.117	<i>TF₃ (he</i> 2 0.241 0.242	2.899 0.901	4 0.875 0.899	5 0.933 0.928	Case EFD (L=6.07m) Present (L=6.07m)	1 0.017 0.010	<i>TF₅ (pl</i> 2 0.146 0.225	<i>itch)</i> 3 0.748 0.724	4 0.966 0.971	5 1.119 1.113

Results

\Box Total resistance, heave & pitch motion in waves

KOREA MARITIME AND OCEAN UNIVERSITY

] 결론

- · OpenFOAM을 활용하여 파랑 중 선박의 부가저항과 2자유도 운동 수치해석
 - 파랑은 모든 경우에 대해 실험결과와 대부분 비슷하게 생성
 - 단파영역(Case 1~2)의 부가저항 최대 오차는 41%, pitch 운동 최대 오차는 53%
 - Heave 운동은 모든 파랑에 대해 10%이내의 오차 발생
 - ☞ 향후, 단파영역에서의 만족할 수 있는 오차 범위 내의 추가적인 부가저항 계산 결과 검증 예정

🗆 향후 계획

- · 격자에 대한 부가저항 및 운동응답 불확실성 해석 및 검증
- 여러 선형에 대한 추가적인 부가저항 계산 검증 수행

THANK YOU Q&A